2 GENERALIZATION OF THE WKB THEORY

always energy-dependent preexponential factors
which cannot generally be dismissed.
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An extension of the present work to a three-
dimensional setting is being considered.
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The problem of ambipolar diffusion and drift of electrons and holes, in which the diffusivity
and mobility tensors for the two carrier species may be of different forms, is examined.
Problems of this type arise, for example, in studying the diffusion and drift of excess carrier
distributions in uniaxially stressed germanium and silicon as well as in certain naturally
anisotropic substances. General ambipolar transport equations are obtained in situations
where the quasineutrality approximation is justified. Solutions to these equations are quite
easily obtained in certain cases where particular simplifying assumptions can be made.
These solutions are explicitly obtained and the range of conditions under which they are ap-
plicable is outlined in detail. Certain other procedures have been employed to solve the
general problem in cases when these conditions are not satisfied. Such methods are usually
applicable only in cases involving rather special and restricted sample geometries. The
transformation properties of the various terms in the ambipolar transport equation are dis-
cussed in various situations of physical interest and importance.

I. INTRODUCTION

The ambipolar transport behavior of excess
carrier distributions in semiconductor crystals has
been discussed by Herring,! Shockley,? and van
Roosbroeck®; the most elegant and explicit treat-
ment of the subject is contained in a subsequent
article by the last author.* In this treatment the
influences which the diffusing electrons and holes

exert upon one another by virtue of their mutual
electrostatic attraction are taken into account in
an approximate way by assuming that the electro-
static forces are sufficient at all times to maintain
an approximate state of electrical neutrality
throughout the crystal. The electrons, whose mo-
bility is greater, are thus envisioned as pulling
the holes, whose mobility is less, along more
rapidly than they would otherwise travel, and being
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themselves slowed down in the process. One may
thus obtain values for the group diffusivity and
group mobility of the excess carrier concentration
distribution which are intermediate between the
corresponding inherent electron and hole transport
coefficients, and which moreover are, in general,
concentration dependent. The requirement of elec-
trical neutrality cannot, of course, be fulfilled
precisely, for then the internal electric fields which
arise to hold the diffusing distributions of opposite
species together could never arise, but under a
wide range of conditions (covering most circum-
stances which are experimentally realizable in
germanium, silicon, and the III-V intermetallic
semiconductors) the requisite fields may be set up
by a very small fractional imbalance in electron
and hole density. *'®

The predictions of this theory have been verified
by experiment’ and the theory itself is generally
regarded as the basis for most of the subsequent
studies related to the transport behavior of excess
carriers or to the behavior of p-» junctions and
semiconductor device structures. It has been ex-
tended in several directions, and these extensions
have substantially increased the area of its ap-
plicability.®=1® Until quite recently, all experi-
mental studies involving the transport properties of
excess carrier distributions in semiconductors
were made with reference to isotropic samples.
Recent studies!!'!? concerning the effects of uniaxial
stresses upon minority carrier drift mobility in
p-type germanium, however, have raised questions
about the ambipolar diffusion and drift of excess
carrier distributions in anisotropic crystals. Cer-
tain other specific instances involving the interac-
tion of light with anisotropic crystals and the
“pinch effect” which may arise when current flows
through such crystals have also been considered in
the literature. '3~

This problem would be a very straightforward
one if the isotropy of electron and hole transport
coefficients were affected in the same way when
uniaxial stress is applied to a semiconductor crys-
tal, but this is not ordinarily the case. Consider,
for example, the case of germanium under uniaxial
stress along the [111] direction, or silicon under
uniaxial stress along [100]. In either instance,
under compressive stresses, the ellipsoidal con-

" stant energy surface for electrons whose major
axes are along the stress direction is lowered in
energy, while the other surfaces belonging to the
multivalley family are increased in energy. If
sufficient compressive stress is brought to bear,
all the electrons in the conduction band can be in
the low-energy minima, and the transport proper-
ties of the conduction electrons in the crystal are
then just those associated with a single ellipsoidal
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valley whose major axis is along the stress direc-
tion. Experimental studies have established the
fact that in silicon and germanium, at any rate,

the form of the ellipsoidal conduction-band surfaces
are not strongly altered by the application of the
stress, !"'18

In the valence band, the constant energy surfaces
ave distorted to a considerable extent by the stress;
by the application of sufficient compressive stress
along certain important crystal directions, it has
been shown!®'?° that the surfaces of constant energy
become ellipsoids of revolution with the stress
direction as the axis of revolution.? There is no
direct relation between the magnitude of the aniso-
tropy which arises in these rather different ways
for electrons and for holes. In fact, for electrons
the longitudinal effective mass is greater than the
transverse mass, while for holes just the reverse
is true. In the most general situation which might
arise, the principal axes of the effective diffusivity
and mobility tensors for electrons and holes may
not coincide as they do in the examples discussed
above. Behavior of this sort may be expected to
occur in semiconductor crystals (such as tellurium)
which are anisotropic in the absence of stress, when
strains whose principal axes do not coincide with
those of the zero-stress conductivity tensor are
created.

In most of the investigations concerning ambi-
polar excess carrier transport which have been
made to date!~*®=1° complete isotropy of the elec-
tron and hole transport coefficients has been as-
sumed. It is the purpose of the present article,
therefore, to extend the theory of ambipolar excess
carrier transport in the most general way to situa-
tions wherein both electron and hole transport coef-
ficients may be anisotropic such that the anisotropy
associated with one carrier species may be alto-
gether different from that of the other. The ap-
proach which will be taken will follow in a general
way the one adopted by van Roosbroeck, * and the
assumptions made by him in connection with the
satisfaction of the quasineutrality conditions are
made here also.

It is the fundamental purpose of this article to
outline the circumstances under which ambipolar
transport in anisotropic crystals can be treated
as a simple extension of the isotropic case merely
by introducing appropriate tensor diffusivities and
mobilities, and when more fundamental effects
arising from the crystal anisotropy are important
and must also be considered.

II. TENSOR FORMULATION OF AMBIPOLAR
TRANSPORT EQUATIONS

Under circumstances such as those outlined
above, one must proceed by regarding the electron



and hole mobilities as tensor quantities i, (ele-
ments p2*) and i, (elements p2®). The diffusivity
tensors for electrons and holes D, (elements DZ*)
and D, (elements D;®) may then be expressed in
terms of the mobility tensors by the Einstein rela-
tions?

D,=(eT/e) I, )
and
D,= (kT/e) T, . (2)

Maxwell-Boltzmann statistics are assumed to be
applicable to both carrier species. The conduc-
tivity tensors ‘(-7.,,, ‘5,,, and Tf, and the resistivity
tensor 7)’ are defined by

O,=pell, (3)
Op=nell, , (4)
G-, (5)
=71, (6)

where n(x, v, z,t) and p(x, v, z, t) are the electron
and hole concentrations, respectively, at any point
within the crystal at any time. We shall assume
that the crystal is homogeneous and at the same
temperature throughout.

The equations of contmulty for electron and hole
particle fluxes J and J, are*

- n ’ an

-V-J,- Tn+g0+g =%r (7)
> P 4

-V d, - =t go+g =" . (8)
bor, 20 ot

In these expressions 7, and 7, are the (concentra-
tion-dependent) electron and hole lifetimes, g, the
equilibrium generation rate of electron-hole pairs,
and g’ the generation rate of electron-hole pairs in
excess of equilibrium at any point (x, y, z) attime ¢, In
this connection, one should note that since the total
recombination rates for electrons and holes must
be equal, we must have

n/Ta=p/Ty . (9)

Likewise, the total generation rates of electrons
and holes are equal since they must be created in
pairs. For this reason, it is not necessary to
distinguish between electron and hole generation
rates in (7) and (8), and therefore the same sym-
bols g, and g’ are used for each.

The fluxes 5,, and 3,, may be expressed in terms
of fields and concentration gradients as

J3.=D,m-nl,E , (10)
Jy== D, Vp+pii, B . (11)

If the quansineutrality condition is satisfied one
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may equate excess electron and hole concentra-
tions, whereby, letting n, and p, represent the con-
centration of electrons and holes in the equilibrium
state,

P—Do=0p=0n=n~n, (12)
and
Vp = V(5p)=V(6n)=Vn (13)

Substituting (10) into (7) and (11) into (8), using
(12) and (13) wherever possible to express quanti-
ties in terms of dp, one may easily obtain two
equations for the excess carrier density having
the form

Ve[ B, V6p)] - V- (pTiy B) +g'~ L a({ff) (14)

and

6p _ 8(5p)
vt (15)

v [D,v6p)+ V- (L, B)+ g’ -
In these equations the quantity 7 is an excess car-
rier lifetime defined by

8p/T=D/Ty= Do/ Tpo=0/Ty=0o/Tny » (16)

where T,y and 7,y represent the thermal equilibrium
hole and electron lifetimes. The equality of the
two defining equations follows from (9).

In the isotropic case D and u,, are scalar quan-
tities, and (14) and (15) then become

D,v(op) - i1,B- V(6p) - ,pv- B g’ 22 - 208)
amn
and
DV2(6p)+ pnE- V(6p) + puv-E+ g’ - é—f = B(Sf)
(18)

One may now obtain an ambipolar transport equa-
tion by eliminating the term containing the diver-
gence of E between these two equations.* Alter-
natively, one may proceed by evaluating the diver-
gence of E from the expression

i=e@,-7,)=0E+e(D,-D,)v(5p) (19)

for the total current density, which follows directly
from (10) and (11), and substituting the result into
either (17) or (18), recalling, of course, that

v.i=0. (20)
In either case, the result is found to be
ald
D*V3(5p) — uw*E- v(6p)+ g’ - ﬁf = (3f) , (21)
with
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(n+p)D, D = Pyt a(6p) ol )
*_ T np * 27 £7Paltp -7 —a

D*= 2D, + D, ’ o PR (22) - e(uf®+uE, ox, + ox, (27)

Equation (21) describes the transport of the excess
carrier distribution §p in terms of an ambipolar
diffusivity D* and an ambipolar mobility u* .
These coefficients are, of course, in general,
concentration dependent, though in many frequently
occurring instances (such as that of low injection
level, where 0p is everywhere much less than the
majority carrier density) they are substantially
constant,

In the anisotropic situation, unfortunately, it is
impossible to eliminate completely the terms
[corresponding to the V- E terms in (17) and (18)]
containing spatial derivatives of the components
of E between Egs. (14) and (15). It is nevertheless
instructive to proceed along somewhat similar
lines by solving for the components of E, substitut-
ing these into the transport equation, and utilizing
the fact that V-I=0. To do this let us first assume
that our coordinate axes coincide with the principal
axes of the diffusivity and mobility tensors of both
electrons and holes. In doing this, of course, we
exclude from our discussion cases where the prin-
cipal axes of the transport tensors of the two
carrier species do not coincide. In this reference
system, then, we may write

DIt 0o o Dt o 0]

b,=l 0o p? o|, D,=|0 D® o] ,
0 o D¥ 0 0 D

while (23)
il 0 o uit 0 o0 |
W= 0w 0, W=|0 u¥ o
0 0 u¥ 0 0 puP

(24)

The total current I [equal to e(j,, - 3,,)] may,
from (10) and (11), be expressed as
i-5.-E+e(D,-D,) - v(sp) . (25)
This equation may be solved for the electric field
components, the result being

Ju P e - D) 8(6p)

o.aw 0,,& o axa

(no summation convention) . (26)

The partial derivatives

3E 1 8 (6p)
—_ e _npoa)y 2 \YH/
o‘“‘(e(D" DY) ox2

may then be substituted into either (14) or (15),
and using the condition that the divergence of the
total current must vanish, that is,

0, o, ol
o o O (28)
8x;  Oxp;  Oxg
to eliminate 8;/8x; from the resulting expression,
one may finally obtain

Z D*Olat 52(51’) - Z “*aaE 6(51))

89(02, ¢ Xy

aJ. 8d, &p ., 8(5p)

21 Y2 _ ZF A <L
+B ox, + P %, T T YR (29)

where

D**%= (n4 p)DE*D2*/(uD2* + pD*) , (30)
R¥= = pluFeug®/ ™+ pug®) (31)
By = (0,1,10‘3,3 - 0;10,3;3)/011033 s (32)
By= (aﬁzof,a _ oﬁzoia) /%08 ) (33)
Jo=dpa —Jpa . (34)

This is the ambipolar transport equation for the
excess carrier distribution 6p expressed in the
principal axis reference system. The ambipolar
diffusivity tensor D* and the ambipolar mobility
tensor I * assume a form which appears as a
straightforward extension of van Roosbroeck’s
scalar expressions for these quantities in the iso-
tropic case.* The terms involving the coefficients
B, and B, are purely anisotvopic in origin; these
terms are absent in the isotropic theory and, in-
deed, it is evident from (32) and (33) that 8, and B,
vanish in an isotropic crystal.

To obtain solutions to (29) in the most general
case, it is clearly necessary to know both E and
J. In the isotropic case, provided the quasineu-
trality condition is satisfied, it is possible to show
that under a broad range of conditions, only the
applied electric field need be considered explicitly
in the ambipolar transport equation, the effects of
any internal fields, arising from concentration
gradients or other sources, being expressed im-
plicitly through the modified ambipolar diffusivity
and mobility coefficients. #*:2* If one may assume
this procedure to be valid in the anisotropic case,
then one might proceed initially by obtaining the
applied field E from the solution of a purely elec-
tromagnetic boundary value problem. Once this
quantity is known, the current density J and the
excess carrier concentration 6p may then be deter-
mined by solving (29) and (25) as a set of simultan-
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eous equations in those variables. In general, of
course, the equations are coupled, and it is ex-
tremely difficult to obtain any analytical solutions.
If, however, the terms containing B; and 8, may be
neglected in comparison with the other terms in
(29), these equations are uncoupled and analytic
solutions can then be obtained by standard proce-
dures. This will clearly be the situation in the
isotropic case because then, of course, B,=8,=0,
but even if the medium is anisotropic there are
certain very important instances where this con-
dition may still be satisfied. These cases may be
enumerated as follows:

Case (i): low-level injection in extrinsic ma-
terial. Clearly, for sufficiently small values of
minority carrier conductivity the coefficients 8,
and B, will be so small as to render the effect of
their respective terms in (29) negligible. This
will ordinarily be the case when the majority car-
rier concentration is much greater than the intrin-
sic concentration, provided also that 6p is every-
where small compared to the majority carrier
density.

Case (ii): spatially constant cuvvent density. If
the current density fvanishes, or is constant within
the crystal, the derivatives 8J,/0x, and 8J,/9x,
will be zero, and the effect of these terms will
again be absent. This case is encountered in purely
diffusive situations where applied fields are not
present and external currents cannot flow. Note
that this condition can be satisfied in some instances
even with nonconstant current densities, since
derivatives such as 8J,/0x,(a #B) need not neces-
sarily be zero.

Case (iii): equal mobility vatios along thvee
principal axes. The coeff1c1ents f‘ and B, will be
zero if o 1013,3— 0,1,103 and 02 o, =0, 0 . Inview of
the definitions of T, and T, as expressed by (3) and
(4), this will occur when plt/pit=p22/p22- ;33 /)38

It is important to understand that the peculiar
electrical and optical effects, such as the pinch
effect*-'® and the photopiezoresistance effect!®
which arise from the transport of carriers in an-
isotropic crystals, are always closely related to
the terms containing 8; and B, in (29) and are al-
ways absent in situations where those terms are
negligible.

As a specific example of the behavior which is
generally encountered in anisotropic crystals, con-
sider a uniform crystal in which the conditions
outlined above in connection with case i are sat-
isfied, and assume that a §-function pulse of excess
carriers-is injected at the origin at time ¢=0.

A constant applied electric field E is assumed to
be present. Then, the terms involving B8, and 5,

in (29) are negligible, and one may proceed to
show, by standard techniques, that the excess car-
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rier density is given by
5p(xy, X, X3, £) = A
DXy, X2, X3, @rDIDEDBA)2
(o= WE°E tP ¢t
xexp<2a‘ T — 4gaat ) —;) . (35)

In this equation A is a constant and D3* and p2®
refer to the minority carrier diffusivity and mo-
bility. It is clear, of course, from (30) and (31)
that in extrinsic samples the ambipolar coefficients
D**® and p**® reduce to the respective minority
carrier coefficients.

The surfaces of constant excess concentration
associated with (34) are ellipsoids whose axes
coincide with the principal axes of the diffusion-
mobility tensors. The distribution expands and
spreads in time as described by (34) and the center
of the distribution moves with a constant group
velocity ¥ given by

F=Z;(Jl I’LgaEOliot J (36)

where fu is a unit vector along the x, axis. These
results can be verified by direct substitution into
the transport equation, and comparison with the
specified boundary conditions. If the excess car-
rier density is so large that appreciable conduc-
tivity modulation is produced, or if the crystal is
nonextrinsic to the extent that the values of the
ambipolar transport coefficients depart signifi-
cantly from those of the minority carrier trans-
port coefficients, the terms in B, and B, in the
transport equationbecome important. The surfaces
of constant concentration are then no longer el-
lipsoidal, and the drift velocity ¥ is no longer
given by (36). Electrical effects such as the pinch
effect become important, and the whole problem
of finding the excess carrier concentration at any
point becomes very complex.

Certain investigators have been able to obtain
solutions to the ambipolar transport equation in
restricted instances where none of the conditions
set forth above are satisfied.*='® These solutions
have been used to describe certain physical effects
which fundamentally arise from the crystal anisot-
ropy. Such solutions can be obtained only in very
specific instances referring to highly restricted
sample geometries and orientations where, for
example, an expression for the current can be ob-
tained by inspection and used to reduce the prob-
lem to one involving essentially only one-dimen-
sional transport.

It will be noted that the procedure used above in
eliminating 8I,/8x; by using Eq. (28) is arbitrary
inasmuch as 8l;/dx, or 8l,/8x, could equally well
have been eliminated from the transport equation.
This is indeed the case, and correspondingly, Eq.
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(29) can be written in other equally valid forms

by eliminating those terms instead. The conclu-
sions to be drawn in regard to the conditions under
which the terms containing 8J,/9x, may safely be
neglected are, nevertheless, the same in all
cases. It might also be contended that it would
have been more elegant to have rejected the initial
choice of a specific coordinate system in favor of
a general dyadic notation or at any rate a more
general component representation. It is, indeed,
possible to proceed using either of these alterna-
tive approaches, but the explicit form of the coef-
ficients appearing in the terms expressing effects
arising from crystal anisotropy is unclear when
this is attempted. It must be remembered, how-
ever, that in Eq. (29) or any other alternative ex-
pression derived with reference to a particular
coordinate system, that the transformation prop-
erties of the individual terms cannot be taken

for granted. Thus, in (29), it is evident that the

components D**? and u*** transform to other
coordinate systems like the components oftensors,
in view of the fact that they arise directly from
the components of the tensors D,, E,, TI,,, and
T,. It is not, however, to be expected that the
transformation properties of 8, and B, are equally
simple. Their transformation properties can be
ascertained from the results of similar calcula-
tions using generalized coordinate systems, but
are quite complicated, in general, and will not be
discussed here. In using Eq. (29), then, other
coordinate systems can be adopted, provided that
the conditions outlined in cases (i), (ii), or (iii)
above are satisfied, and that a proper tensor trans-
formation of the components D*** and u**“ is
made. If those conditions are not satisfied, then
the terms containing B8, and B, are important and
one must restrict oneself to the initially chosen
principal axis system.

*Work supported in part by the U. S. Air Force, Air
Force Office of Scientific Research, under Grant No.
AF-AFOSR-73-66.
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